Getting Pass Tutorial for DSE Name: ______ Class: _____

Tutorial 1 Laws of Integral Indices

Key Points

Laws of Integral Indices

If *m*, *n* are integers, and *a*, $b \neq 0$, then 1. $a^m \bullet a^n = a^{m+n}$ 2. $\frac{a^m}{a^n} = a^{m-n}$ 3. $(a^m)^n = a^{nm}$ 4. $(ab)^n = a^n b^n$ 5. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ 6. $a^{-n} = \frac{1}{a^n}$ 7. $a^0 = 1$

Revision Exercise

Short Questions

1. Simplify $\frac{x^7}{x^4 y^{-5}}$ and express your answer with positive indices.

2. Simplify $\frac{m^2 n^{-4}}{m^{-3}}$ and express your answer with positive indices.

3. Simplify
$$\frac{a^{-3}b^{-2}}{b^6}$$
 and express your answer with positive indices.

4. Simplify $\frac{x^{-14}y^9}{y^5}$ and express your answer with positive indices.

5. Simplify
$$\frac{x^{-1}y^4}{x^3y}$$
 and express your answer with positive indices.

6. Simplify $\frac{x^{-7}y^5}{x^2y^{-8}}$ and express your answer with positive indices.

7. Simplify $\frac{(m^6 n^{-5})^2}{n^9}$ and express your answer with positive indices.

8. Simplify $\frac{m^{15}n^{18}}{(m^2n)^7}$ and express your answer with positive indices.

9. Simplify $\frac{(ab)^3}{a^{-4}b^7}$ and express your answer with positive indices.

10. Simplify $\frac{(a^2b^{-3})^4}{b^{-5}}$ and express your answer with positive indices.

11. Simplify $\frac{a^{11}}{(a^4b^{-9})^4}$ and express your answer with positive indices.

12. Simplify $x^7 \left(\frac{x^2}{y}\right)^2$ and express your answer with positive indices.

13. Simplify
$$m^5 \left(\frac{m^4}{n^{-2}}\right)^5$$
 and express your answer with positive indices

14. Simplify
$$\frac{(a^3b)^{-1}}{(-ab^{-4})^{-2}}$$
 and express your answer with positive indices

1.	(2x)	$)^3 \bullet x^6 =$		
	A.	$2x^{9}$.	B.	$6x^{6}$.
	C.	$8x^{9}$.	D.	$12x^{18}$.

2.
$$(4n+3n)n^4 =$$

A.
$$7n^5$$
.B. $7n^6$.C. $12n^5$.D. $12n^8$.

3.
$$\frac{(5n^4)^3}{5n^3} =$$

A. $25n^4$. B. $25n^9$.
C. $125n^{12}$. D. $125n^{15}$.

4.
$$(3y^4)^{-4} =$$

A. $\frac{1}{12}$.
B. $\frac{1}{12y^8}$.
C. $\frac{1}{81y^{16}}$.
D. $\frac{1}{81y^{256}}$.

5. $\frac{(7m^5)^{-3}}{7m^6} =$ A. $49m^9$.

C.
$$\frac{1}{2401m^{21}}$$
. D. $\frac{1}{2401m^{90}}$.

6.
$$(64 \cdot 4^{n-2})^3 =$$

A. 2^{6n+6} . B. 2^{6n+12} .

C. 2^{12n+18} . D. 2^{12n+24} .

 $49m^{90}$.

B.

Name:

Class:

Getting Pass Tutorial for DSE

Tutorial 2 Polynomials, Identities and Factorization

Key Points

Polynomials

- **1.** A polynomial can be a monomial or the sum of two or more monomials, e.g. -1, n, $4m^2$, 2a 3, $-3x + 5z + 6xy^2$.
- 2. The terms that contain the same variable(s) to the same power(s) are called like terms. Otherwise, they are called unlike terms.
- **3.** Addition and subtraction of polynomials can be performed by combining like terms.
- 4. We can multiply polynomials by applying the distributive law of multiplication:
 - (a) a(x+y) = ax+ay (b) (x+y)a = xa+ya

Identities

1.	And	An equation that can be satisfied by ALL values of the unknown(s) is called an identity. We use the symbol '≡'		
	inste	ead of '=' to represent an identity.		
2.	Some important algebraic identities			
	(a)	Difference of two squares:		
		$a^2 - b^2 \equiv (a+b)(a-b)$		
	(b)	Perfect square:		
		$(a+b)^2 \equiv a^2 + 2ab + b^2$		
		$(a-b)^2 \equiv a^2 - 2ab + b^2$		

Factorization

- **1.** The process of expressing an algebraic expression as a product of its factors is called factorization. It is the reverse process of expansion.
- 2. Methods of factorization
 - (a) By taking out common factors
 - (**b**) By grouping terms method
 - (c) By using identities (refer to 'Identities' above)

e.g. $x^2 - 2x - 3 \equiv (x + 1)(x - 3)$

(d) By cross-method

Revision Exercise

Short Questions

- **1.** Expand
 - (a) (x+4)(3x-2),
 - **(b)** $(a+5)(a^2-3a+1)$.

2. If *m* and *n* are constants such that $x^2 + n \equiv (x-1)(x+m) + 2$, find the values of *m* and *n*.

3. If p and q are constants such that $2x^2 - x + q - 5 \equiv (2x+1)(x+p)$, find the values of p and q.

- **4.** Factorize
 - (a) 2u 6v,
 - **(b)** $u^2 6uv + 9v^2$,
 - (c) $u^2 6uv + 9v^2 2u + 6v$.

- (a) 3m + 6n,
- **(b)** $m^2 + 7mn + 10n^2$,
- (c) $m^2 + 7mn + 10n^2 + 3m + 6n$.

- 6. Factorize
 - (a) $x^2 8xy + 16y^2$,
 - **(b)** $x^2 8xy + 16y^2 + 3x 12y$.

- (a) $9m^2 4n^2$,
- **(b)** $9m^2 4n^2 + 12m + 8n$.

8. Factorize

- (a) 6+2a-3b-ab,
- **(b)** 6+2a-3b-ab+12-6b.

9. Factorize

(a)
$$a^2 + 8a - 9$$

(b) $ab^2 + 9b^2 + a^2 + 8a - 9$.

(a)
$$p^2 - 6pq + 8q^2$$
,

(b)
$$p^2 - 6pq + 8q^2 - 2p + 8q$$

11. Factorize

- (a) $2m^2 + 3mn 5n^2$,
- **(b)** $2m^2 + 3mn 5n^2 + (m-n)^2$.

12. Factorize

- (a) $4x^2 + 20xy + 25y^2$,
- **(b)** $4x^2 + 20xy + 25y^2 100$.

- (a) $y^3 2xy^2 + 5y^2$,
- **(b)** $y^3 2xy^2 + 5y^2 y + 2x 5$.

Multiple Choice Questions

- 1. $(x-2)(x^2+2x-4) =$ A. $x^3 - 8$. B. $x^3 - 8x + 8$. C. $x^3 + 4x^2 - 8x + 8$. D. $x^3 - 4x^2 - 8x + 8$. 2. $(3x+5y)^2 - (3x-5y)^2 =$ B. $10y^2$. A. 0. C. 34*xy*. D. 60*xy*. 3. If p and q are constants such that $x^2 + p \equiv (x-4)(x+q) - 8$, then $p = x^2 + p \equiv (x-4)(x+q) - 8$, then $p = x^2 + p \equiv (x-4)(x+q) - 8$. B. -8. A. –24. C. 4. D. 24. 4. If p and q are constants such that $x^2 - px + q \equiv (x-2)(x+p) + 5$, then q = (x-2)(x+p) + 5, then q = (x-2)(x+p) + 5. A. -1. B. 1.
 - C. 3. D. 7.

Tutorial 2 Polynomials, Identities and Factorization

If a and b are constants such that $ax(x+5) + x^2 \equiv bx(x-3) - x$, then b =5.

A.
$$-\frac{3}{2}$$
.
 B. $-\frac{1}{2}$.

 C. $\frac{1}{2}$.
 D. $\frac{3}{2}$.

If h and k are constants such that $h(x+5)^2 + k(x-2)^2 \equiv 2x^2 - 22x - 13$, then h = 16.

- D. 3. C. 1.
- 7. $49 (x 4y)^2 =$
 - A. (7 x + 4y)(7 + x + 4y). C. (7-x-4y)(7+x+4y). D. (7-x-4y)(7+x-4y).
- $8. \quad ux vx uy + vy uz + vz =$
 - A. (u+v)(x-y+z).
 - C. (u-v)(x+y+z).
- 9. $7p+7q-p^2+q^2 =$ A. (p+q)(7+p-q). B. (p+q)(7-p+q). C. (p-q)(7+p-q). D. (p-q)(7-p+q).

10.
$$x^2 - 4y^2 - 12y - 9 =$$

A. $(x - 2y - 3)(x + 2y + 3)$.
B. $(x - 2y + 3)(x + 2y + 3)$.
C. $(x + 2y - 3)(x + 2y + 3)$.
D. $(x - 2y + 3)(x - 2y - 3)$.

Longman Secondary Mathematics

- B. (u+v)(x+y-z).
- D. (u-v)(x-y-z).

- B. (7-x+4y)(7+x-4y).

Getting Pass Tutorial for DSE

Name:

Class: ____

Getting Pass Tutorial for DSE

Tutorial 3 Algebraic Fractions and Formulas

Key Points

Algebraic Fractions

1.	Multiplication and division	
	e.g. $\frac{x^2}{y^6} \times \frac{y^4}{x^3} = \frac{x^2}{x_x^6} \times \frac{x^4}{x_x^6} = \frac{1}{xy^2}$ and	
2.	$\frac{a^3}{2b^4} \div \frac{a^2}{4b} = \frac{a^3}{2b^4} \times \frac{4b}{a^2} = \frac{a}{2b_{b^3}^{\mathcal{A}}} \times \frac{2a}{\mathcal{A}^{\mathcal{B}}} = \frac{2a}{b^3}$ Addition and subtraction	
	e.g. $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$ and	
	$\frac{1}{m} - \frac{1}{m+1} = \frac{(m+1) - m}{m(m+1)} = \frac{1}{m(m+1)}$	

Formulas and Method of Substitution

A formula is an equality relating two or more variables. By substitution, we can find the value of a variable in a

formula when the values of other variables are known. For example,

consider the formula A = lw. If l = 7 and w = 2, then

$$A = 7 \times 2$$

=<u>14</u>

Subject of a Formula

If a variable is expressed in terms of other variables, it is called the subject of the formula.

Example

Make *p* the subject of the formula q = 4p + 9. Solution q = 4p + 9 q - 9 = 4p $p = \frac{q - 9}{4}$

Revision Exercise

Short Questions

1. Simplify

(a)
$$\frac{3x^4}{y^6} \times \frac{y^5}{6x^2}$$
,
(b) $\frac{2m}{n^3} \div \frac{m^7}{8n^4}$.

2.

Simplify

(a)
$$\frac{1}{m} + \frac{3}{4m}$$
,
(b) $\frac{3}{2p} - \frac{1}{6p}$.

3. Simplify

(a)
$$\frac{2a}{a+1} + \frac{2}{1+a}$$
,
(b) $\frac{b}{1-2b} - \frac{1}{2b-1}$.

4. Simplify

(a)
$$\frac{1}{b} + \frac{2}{b-1}$$
,
(b) $\frac{1}{x-2} - \frac{3}{2x+1}$.

5. Simplify

(a)
$$\frac{3}{3a-4} + \frac{1}{1-a}$$
,
(b) $\frac{2}{m+4} - \frac{3}{5m-2}$.

6. Make *h* the subject of the formula
$$\frac{9h-7k}{2} = -4$$
.

7. Make x the subject of the formula $\frac{6x + 7y - 9}{y} = 3$.

8. Make w the subject of 4w-6=5(v-w).

9. Make c the subject of
$$\frac{6d-7c}{5} = c-1$$
.

10. Make *n* the subject of the formula n(m-5) = 3m+2n.

11. Make *r* the subject of the formula Hr = (6r - K)S.

12. Make q the subject of the formula
$$\frac{2-p}{3-q} = 4p$$
.

13. Make *a* the subject of the formula
$$\frac{ca+b}{a-b} = 2$$
.

14. Make *t* the subject of the formula
$$\frac{6t-s}{3-t} = 2s$$
.

15. Make *t* the subject of the formula $\frac{4}{s} + \frac{5}{t} = 3$.

16. Make b the subject of the formula
$$\frac{1}{3a} - \frac{1}{6b} = \frac{2}{3}$$
.

- 17. Consider the formula $\frac{4}{2-a} = \frac{5}{3b+1}$.
 - (a) Make *b* the subject of the above formula.
 - (**b**) If a = -6, find the value of *b*.

18. It is given that $6p - 1 = \frac{9p - q}{5 - r}$.

- (a) Express p in terms of q and r.
- (b) If q = 1 and r = -2, find the value of p.

- **19.** Consider the formula 2(5e-f) = e+8.
 - (a) Make *f* the subject of the above formula.
 - (b) If the value of e is increased by 4, write down the change in the value of f.

- **20.** Consider the formula 6(4+3v-4w) = 20v.
 - (a) Make *v* the subject of the above formula.
 - (b) If the value of w is decreased by 2, write down the change in the value of v.

Multiple Choice Questions

1.
$$\frac{3}{3-2r} + \frac{2r}{2r-3} =$$

A. -1. B. 1.
C. $\frac{3+2r}{3-2r}$. D. $\frac{3+2r}{2r-3}$.

2.
$$\frac{2}{2s+5} - \frac{1}{3-s} =$$

A. $-\frac{11}{(2s+5)(s-3)}$.
B. $\frac{11}{(2s+5)(s-3)}$.
C. $\frac{1-4s}{(2s+5)(s-3)}$.
D. $\frac{4s-1}{(2s+5)(s-3)}$.

3.
$$\frac{11}{(2s+5)(s-3)}$$
.
5. $\frac{4s-1}{(2s+5)(s-3)}$.

2p - 1.

3. If
$$6c = 3 - 5d$$
, then $d =$
A. $\frac{3(1-2c)}{5}$.
B. $\frac{3(1+2c)}{5}$.
C. $\frac{3(2c-1)}{5}$.
D. $\frac{5(2c-1)}{3}$.

4. If
$$A = \frac{LT}{B} + 5$$
, then $T =$
A. $\frac{(5-A)L}{B}$.
B. $\frac{(5-A)B}{L}$.
C. $\frac{(A-5)L}{B}$.
D. $\frac{(A-5)B}{L}$.

5. If
$$4p-5=2(q-4)$$
, then $q =$
A. $2p-9$.
B. $2p-1$.
C. $2p-\frac{13}{2}$.
D. $2p+\frac{3}{2}$.

6. If
$$p = \frac{5s}{3t - 2s}$$
, then $s =$
A. $\frac{3pt}{2p - 5}$.
B. $\frac{3pt}{2p + 5}$.
C. pt .
D. $7pt$.

7. If
$$x = \frac{y+2}{y-7}$$
, then $y =$
A. $y = \frac{-5}{x-1}$. B. $y = \frac{9}{x+1}$.
C. $y = \frac{7x+2}{x-1}$. D. $y = \frac{7x+2}{x+1}$.
8. If $p = \frac{3}{2-q} + 7$, then $q =$
A. $q = \frac{17-2p}{p-7}$. B. $q = \frac{2p-17}{p-7}$.
C. $q = \frac{2p+17}{p-7}$. D. $q = \frac{2p+17}{p+7}$.
9. If $\frac{c}{w-v} = 5$, then $w =$
A. $\frac{cv}{d-5v}$. B. $\frac{cv}{d+5v}$.
C. $\frac{dv}{c-5v}$. D. $\frac{dv}{c+5v}$.
I. $\frac{dv}{c-5v}$. I. $\frac{dv}{c+5v}$.
I. If $\frac{x+2}{h} = \frac{x-2}{k}$, then $x =$
A. $\frac{h+k}{2(h-k)}$. D. $\frac{2(h+k)}{k-h}$.
II. If $\frac{3-c}{c} = \frac{3+x}{x}$, then $x =$
A. $\frac{2c}{2-3c}$. B. $\frac{2c}{2+3c}$.

Key Points

Percentage

Percentage = $\frac{\text{part}}{\text{whole}} \times 100\%$ If *P* is *a*% more than *Q*, then *P* = *Q*(1+*a*%) If *R* is *b*% less than *S*, then *R* = *S*(1-*b*%) Percentage increase = $\frac{\text{new value-original value}}{\text{original value}} \times 100\%$ (if new value > original value) Percentage decrease = $\frac{\text{original value-new value}}{\text{original value}} \times 100\%$ (if new value < original value) Percentage change = $\frac{\text{new value-original value}}{\text{original value}} \times 100\%$

Profit and Loss

Profit = selling price – cost price Profit per cent = $\frac{\text{profit}}{\text{cost price}} \times 100\%$ Selling price = cost price × (1 + profit per cent) Loss = cost price – selling price Loss per cent = $\frac{\text{loss}}{\text{cost price}} \times 100\%$ Selling price = cost price × (1 – loss per cent)

Discount

Discount = marked price – selling price

Discount per cent = $\frac{\text{discount}}{\text{marked price}} \times 100\%$

Selling price = marked price \times (1 – discount %)

Revision Exercise

Short Questions

- A pet shop sells cats and dogs only. There are 16 cats in the pet shop and the number of dogs is 50% more than that of cats.
 - (a) Find the number of dogs in the pet shop.
 - (b) What is the percentage of dogs in the pet shop?

- 2. There are 250 girls in a ceremony and the number of boys is 40% less than that of girls.
 - (a) Find the number of boys in the ceremony.
 - (b) What is the percentage of boys in the ceremony?

- **3.** There are 800 local visitors in a museum and the number of non-local visitors is 75% less than that of local visitors.
 - (a) Find the number of non-local visitors in the museum.
 - (b) What is the percentage of local visitors in the museum?

- **4.** Andy is 10% shorter than Sam, and Sam is 10% taller than Ben. The height of Andy is 168.3 cm.
 - (a) Find the height of Sam.
 - (b) Is Ben taller than Andy? Explain your answer.

- 5. The top speed of car *A* is 25% lower than that of car *B*, while the top speed of car *B* is 25% higher than that of car *C*. It is given that the top speed of car *B* is 120 km/h.
 - (a) Find the top speed of car A.
 - (b) Which car has the lowest top speed? Explain your answer.

- 6. The marked price of a cup is \$40. It is given that the marked price of the cup is 25% higher than the cost.
 - (a) Find the cost of the cup.
 - (b) If the cup is sold at \$42, find the profit per cent.

- 7. The marked price of a jacket is \$250. The jacket is sold at a discount of 40% on its marked price.
 - (a) Find the selling price of the jacket.
 - (b) A loss of \$10 is made by selling the jacket. Find the loss per cent.

- **8.** The marked price of a cupboard is \$845. It is given that the marked price of the cupboard is 30% higher than its cost.
 - (a) Find the cost of the cupboard.
 - (b) If the cupboard is sold at \$637, find the loss per cent.

- 9. The marked price of a book is \$270. The book is sold at a discount of 30% on its marked price.
 - (a) Find the selling price of the book.
 - (b) If the marked price of the book is 35% above its cost, determine whether there will be a gain or a loss on selling the book. Explain your answer.

- **10.** The marked price of a wallet is \$550. The wallet is sold at a discount of 32% on the marked price.
 - (a) Find the selling price of the wallet.
 - (b) If the profit per cent is 49.6%, find the cost of the wallet.

- **11.** The marked price of a watch is \$420. The watch is sold at a discount of 15% on its marked price.
 - (a) Find the selling price of the watch.
 - (b) If the loss percent is 10.75%, find the cost of the watch.

- 12. The cost of a bicycle is \$600. The bicycle is sold and the profit per cent is 32%.
 - (a) Find the selling price of the bicycle.
 - (b) If the bicycle is sold at a discount of 20%, find the marked price of the bicycle.

13. The cost of a necklace is \$300. The necklace is sold at a discount of 30% and the proft per cent is 5%. Find the marked price of the necklace.

14. The cost of a chair is \$240. If the chair is sold at a discount of 20% on its marked price, then the loss per cent is 15%. Find the marked price of the chair.

- **15.** There are 320 male workers in a factory and the number of female workers is 30% more than that of male workers.
 - (a) Find the number of female workers in the factory.
 - (b) There are 92 part-time workers in the factory.
 - (i) Find the percentage of part-time workers in the factory.
 - (ii) It is given that 12.5% of the male workers are part-time workers. If x% of the female workers are also part-time workers, find the value of x.

Multiple Choice Questions

1. There are 714 students in a school. If the number of girls is 30% less than that of boys, then the number of girls is

A.214.B.285.C.294.D.420.

2. If Peter is 25% taller than Mary, then Mary is

- A. 20% shorter than Peter. B. 25% shorter than Peter.
- C. 30% shorter than Peter. D. 35% shorter than Peter.

3. If the price of a mobile phone is increased by 20% and then decreased by 25%, find the percentage change in the price of the mobile phone.

A. -10% B. -5% C. 0% D. 5%

4. In a company, 60% of the employees are male. If 30% of the male employees and 25% of the female employees are university graduates, then the percentage of the employees who are university graduates is

A.	27%.	B.	28%
C.	33% .	D.	55%.

5. The marked price of a toy is \$60. If the toy is sold at the marked price, then the profit per cent is 20%. If the toy is sold at a 10% discount on the marked price, then the profit per cent is

A.	6%.	В.	8%.
C.	10%.	D.	25%.

6. Karen sells two paintings for \$27 000 each. She gains 25% on one and loses 25% on the other. After the two transactions, Karen

- A. loses \$3600. B. loses \$2400.
- C. gains \$1200. D. has no gain and no loss.

7. If the perimeter of a square is increased by 10%, then the area of the square is increased by

- A. 10%. B. 16%.
- C. 21%. D. 25%.